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Abstract
We consider a non-relativistic particle on the surface of a semi-infinite cylinder
of circumference L submitted to a perpendicular magnetic field of strength B
and to the potential of impurities of maximal amplitude w. This model is of
importance in the context of the integer quantum Hall effect. In the regime
of strong magnetic field or weak disorder B � w, it is known that there are
chiral edge states, which are localized within a few magnetic lengths close
to, and extended along the boundary of the cylinder, and whose energy levels
lie in the gaps of the bulk system. These energy levels have a spectral flow,
uniform in L, as a function of a magnetic flux which threads the cylinder along
its axis. Through a detailed study of this spectral flow, we prove that the
spacing between two consecutive levels of edge states is bounded below by
2παL−1 with α > 0, independent of L, and of the configuration of impurities.
This implies that the level repulsion of the chiral edge states is much stronger
than that of extended states in the usual Anderson model and their statistics
cannot obey one of the Gaussian ensembles. Our analysis uses the notion of
relative index between two projections and indicates that the level repulsion is
connected to topological aspects of quantum Hall systems.

PACS numbers: 02.70.Hm, 73.43.Cd, 45.50.−j

1. Introduction and results

Recently there has been mathematical progress concerning the spectral properties of disordered
quantum Hall systems with boundaries. In the theory of the integer quantum Hall effect one
considers non-interacting electrons confined on the surface of a finite cylinder [1] or on a
corbino disc [2], submitted to a perpendicular uniform magnetic field of strength B and to the
potential of impurities of maximal amplitude w. In a classic paper on the subject [2] Halperin
argued that, at least for strong magnetic field and weak disorder (B � w in appropriate units),
there exist quantum mechanical states localized near and extended along the boundaries of
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the sample. These states carry a diamagnetic current contributing to the total Hall current.
Halperin’s analysis applies to energies that lie in the gaps separating the Landau bands of
the bulk-disordered Hamiltonian, i.e. the Hamiltonian of an infinite two-dimensional planar
system (with no boundaries). Here we will call this part of the spectrum the ‘pure edge
spectrum’. Progress towards the characterization of the nature of the pure edge spectrum
has been made in recent works for systems with one smooth boundary [3–5]. In the present
contribution we obtain new results for such systems, which are used in separate work on more
realistic geometries involving two boundaries [6].

We consider the Hamiltonian of a particle on a cylinder of radius L
2π

thread by a flux line
with flux �

H(�) = 1

2
p2

x +
1

2

(
py − Bx +

�

L

)2

+ W(x) + V (x, y) (1.1)

where x ∈ R,−L
2 � y � L

2 , with periodic boundary conditions in the y direction
�

(
x,−L

2

) = �
(
x, L

2

)
. The particle is confined to the left half of the cylinder because of the

external potential W which models the boundary of a ‘semi-infinite cylinder’. We assume that
it is continuous, and W(x) = 0 for x � 0,W ′(x) > 0 for x � 0, W(x) → +∞, x → +∞.
For technical reasons we assume a growth of W that is not too fast: we suppose that for x � 0,
u1x

γ � W(x) � u2x
γ , for some 0 < u1 < u2 and γ � 2. The potential of impurities V is

piecewise continuous and bounded |V (x, y)| � w with 0 < w < B
2 . We also suppose that

V (x, y) = 0 for x > 0, however, our methods can be adapted to a more general model where
the impurity potential extends inside the region of the boundary.

We will also use two other Hamiltonians: the ‘edge Hamiltonian’ He(�) obtained from
(1.1) by removing V and the ‘bulk Hamiltonian’ Hb(�) obtained from (1.1) by removing W .

The ‘semi-infinite planar’ case corresponds to L = +∞. In this limit the corresponding
Hamiltonians become independent of � and we denote them H∞,He,∞,Hb,∞. It is easy to see
that Hb,∞ has gaps Gn ⊃ ](

n + 1
2

)
B + w,

(
n + 3

2

)
B − w

[
, n ∈ N. A basic fact is that for weak

enough disorder the ‘pure edge spectrum’ σ(H∞) ∩ Gn, n ∈ N is continuous. This result is
also proved for W replaced by a Dirichlet boundary condition at x = 0 and for smooth-curved
open boundaries (see [3–5]).

When L is finite Gn contains only discrete isolated eigenvalues. We formulate this result
and all the subsequent ones in the special case n = 0.

Lemma 1. Let B > 2w. For any 0 < ε < B
2 − w the set σ(H(�)) ∩ G̃0, G̃0 =]

B
2 + w + ε, 3B

2 − w − ε
[

contains only a finite number of isolated eigenvalues of finite
multiplicity. We label the eigenvalues of H(0) in G̃0 as E1(0) � E2(0) � · · · � EN(0) for
some finite N. Any Ek(0) ∈ G̃0 can be continued into one or several analytic branches Ek(�)

for � ∈ [0,�k] for some small enough �k > 0.

The discreteness of the spectrum in the specified interval is non-trivial even if the
circumference of the cylinder is finite because the impurity potential can extend to infinity in
the direction x → −∞ where there is no confinement. In fact one can see that the rest of
the spectrum may have dense parts. For example, if V is a typical realization of a random
potential the Landau bands

[(
n + 1

2

)
B − w,

(
n + 1

2

)
B + w

]
have dense spectrum. Now let

0 < δ < B
2 − w − ε and 	 = ]B − δ, B + δ[. For L large enough, as long as an eigenvalue

Ek(�) ∈ 	 for some �, then we are assured that it can be continued into an analytic branch for
the whole interval [0, 2π]. This comes from the fact (see inequality (3.15)) that the maximal
variation of Ek(�) is 2π

√
3BL−1, so that it stays in G̃0 and never merges in the Landau bands.

In the rest of this work we fix ε small and 0 < δ < B
2 −w−ε, and look only at eigenvalues

Ek(�) ∈ 	. Note that as � varies from 0 to 2π some of the branches may move in or out
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of 	. A reformulation of the analysis in [3–5] shows that there exists a spectral flow which is
uniform in L. This is expressed by the following lemma.

Lemma 2. Let B > 2w. There exist δ, w0 small enough, L0 large enough such that for
w < w0, L > L0 all eigenvalues Ek(�) ∈ 	 satisfy

L
d

d�
Ek(�) � α (1.2)

where α is strictly positive independent of L and k and depends only on W,B,w and δ.

The existence of a spectral flow is equivalent to the presence of a chiral diamagnetic
current. Indeed by the Feynman–Hellman theorem

d

d�
Ek(�) = jk(�) (1.3)

where

jk(�) = 1

L

〈
�k(�)

∣∣∣∣
(

py − Bx +
�

L

)
�k(�)

〉
(1.4)

is the diamagnetic current (or edge current) associated with the eigenstate |�k(�)〉
corresponding to the level Ek(�).

The Hamiltonians H(�) and H(� + 2π) are unitarily equivalent, the unitary operator
being multiplied by exp

(
2π i y

L

)
. Thus for each Ek(�) which does not merge in the Landau

bands there must exist some k′ such that Ek(2π) = Ek′(0). From lemma 2 it is clear that
k′ > k, but this does not completely characterize the spectral flow. Our main new result states
that k′ = k + 1 and characterizes the level spacing for the pure edge spectrum.

Theorem 1. Let B > 2w. There exist δ, w0 small enough, L0 large enough such that for
w < w0, L > L0, the branches Ek(�) belonging to 	 for all � ∈ [0, 2π] satisfy

Ek(2π) = Ek+1(0). (1.5)

Moreover the level spacing in 	 satisfies

2πα

L
� |Ek+1(0) − Ek(0)| � 2π

√
3B

L
. (1.6)

For the constant α in lemma 2 and theorem 1 we can take the right-hand side of (2.29).
The important point is that in the lower bound of (1.6) α does not depend on the detailed
configuration of the impurity potential but only on its maximal amplitude. So for a random
potential the level spacing is random but our lower bound is non-random.

For the usual Anderson model it is proved that the level spacing of localized states satisfies
the Poisson statistics [7, 8], and it is numerically established that extended states have a level
repulsion satisfying the Wigner surmise [9]. Here we have a different situation: the states
are extended, chiral and have a much stronger level repulsion which makes the level spacing
very rigid. Let ρ(E) denote the average density of edge states. We expect from (1.6) that, in
the limit L → ∞, the rescaled level spacing s = Lρ(Ek)|Ek+1 − Ek| has a histogram p(s)

which is a certain broadening of δ(s − 1) with a finite support of O
(

w2

B2

)
. The level statistics

cannot follow the Gaussian ensembles and it would be worthwhile to investigate this question
numerically for an analogous model on a lattice. It is apparent from the proof of theorem 1
that the rigidity of the edge spectrum is related to the topological invariants of the quantum
Hall effect. Also if the spectral flow satisfied Ek(2π) = Ek+n(0) with n � 2, it would not be
forbidden to have n consecutive levels arbitrarily close.
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We wish to point out that all these features can be checked immediately for a simple
toy Hamiltonian. Consider a one-dimensional chiral particle on a circle of circumference L
threaded by a flux �

h(�) =
(

−i∂y +
�

L

)
+ v(y). (1.7)

The exact spectrum is

em(�) = 2πm

L
+

�

L
+

1

L

∫ L
2

− L
2

dy v(y) (1.8)

which satisfies (1.2), (1.5), (1.6) and has p(s) = δ(s − 1). It is expected that (1.7) is a
good approximation of (1.1) for distances to the boundary of the order of the magnetic length
x = O

(
1√
B

)
.

Finally we recall how it follows from (1.5) that the ‘edge conductance’ of the semi-infinite
system is quantized (see [1, 2, 4] for similar discussions). Let P	(�) be the projector of H(�)

on an energy range 	. The edge conductance may be defined as the total edge current per unit
energy

σe = lim
L→∞

1

|	|L Tr

(
py − Bx − �

L

)
P	(�). (1.9)

We assume that for a suitable class of potentials V this limit exists and is independent of
� (the flux has no effect for the semi-infinite plane). We expect this assumption to be true
for typical realizations of random potentials that are ergodic with respect to the translations
along y. In this case the limit should be equal to 1

	
Av

∫
dx〈x, 0|(py − Bx)P∞,	|x, 0〉 where

Av is the average over the disorder and P∞,	 the projector of H∞ onto 	. The limit of the
latter quantity when 	 → µ has been shown to be an integer if µ is a point in the gap G0, by
non-commutative geometry techniques applied to the lattice case [10]. In the present situation
it is easy to see that for 	 in the first gap of the bulk Hamiltonian Hb,∞

1

|	|L
∥∥∥∥
(

py − Bx − �

L

)
P	(�)

∥∥∥∥
1

� 1

|	|L
∥∥∥∥
(

py − Bx − �

L

)
P	(�)‖ · ‖P	(�)

∥∥∥∥
1

�
√

2

|	|L sup
‖ψ‖=1

(〈ψ|P	(�)(H(�) − V )P	(�)|ψ〉)1/2Tr P	(�)

�
√

3B

|	|L Tr P	(�) = O(1). (1.10)

Here ‖ · ‖1 and ‖ · ‖ are the trace and operator norms respectively and we used ‖AB‖1 �
‖A‖ · ‖B‖1 for A bounded and B trace class. In the last equality we used there are O(L)

states in 	 because of (1.6) so that the final bound is uniform with respect to L. Since we have
assumed that σe is independent of �, by averaging over � we get

σe = lim
L→∞

1

|	|
∫ 2π

0

d�

2π

∑
Ek(�)∈	

dEk(�)

d�

= lim
L→∞

1

|	|
kmax∑
kmin

∫ 2π

0

d�

2π

dEk(�)

d�

= lim
L→∞

1

2π |	|
kmax∑
kmin

(Ek+1(0) − Ek(0))

= lim
L→∞

1

2π |	|
(
Ekmax − Ekmin

) = 1

2π
. (1.11)
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For the first equality we use (1.3), (1.4) and dominated convergence. To obtain the second
equality we consider separately the contributions of the eigenvalues with kmin � k � kmax

such that Ek(�) ∈ 	 for all � ∈ [0, 2π], and of a finite number of eigenvalues with k < kmin

(resp k > kmax) which enter (resp leave) 	 as � varies from 0 to 2π . From (1.6) and (3.15)
this latter contribution is O(L−1). Finally (1.5) is used in the third equality. Here the units are
such that e = h̄ = 1 so 1

2π
= e2

h
.

Section 2 contains the proofs of lemmas 1 and 2 and a third lemma that is needed for the
proof of theorem 1 in section 3. The appendices A and B contain technical estimates.

2. Discreteness of edge spectrum and spectral flow

Proof of lemma 1. Let D > 0 to be chosen later (large) and VD(x, y) = V (x, y) for
x � −D,VD(x, y) = 0 for x > −D. Then V (x, y) − VD(x, y) has compact support and a
standard argument using the resolvent identity implies that the essential spectra of

HD(�) = He(�) + VD(x, y) (2.1)

and

H(�) = HD(�) + V (x, y) − VD(x, y) (2.2)

coincide [11]. Therefore if we show that σ(HD(�))∩G̃0 contains only isolated eigenvalues of
finite multiplicity, the same is true for H(�). This will be achieved below using a decoupling
scheme [12, 13] which proves that σ(HD(�))∩ G̃0 is a small perturbation of σ(He(�))∩ G̃0.
The set σ(He(�)) consists of non-degenerate energy levels εn

(
2πm
L

+ �
L

)
, n ∈ N the Landau

index and m ∈ Z, where εn(k), k ∈ R the wavenumber conjugate to y, are the spectral
branches of He,∞. These spectral branches are monotone increasing entire functions of k with
εn(k) → +∞ for k → +∞ and εn(k) → (

n + 1
2

)
B for k → −∞ (see for example [3]).

In order to set up the decoupling scheme we introduce the characteristic functions χe(x)

of −D
2 � x < +∞ and χb(x) of −∞ � x < −D

2 . Note that χe(x) + χb(x) = 1 for
all x. We also need the monotone and twice differentiable functions Je(x), Jb(x) such that
Je(x) = 0 for −∞ < x < − 3D

4 − 1 and Je(x) = 1 for − 3D
4 + 1 < x < ∞; Jb(x) = 1

for −∞ < x < −D
4 − 1, Jb(x) = 0 for −D

4 + 1 < x < ∞.
We introduce the Green functions Gα(z) = (Hα(�) − z)−1 for α = e, b,D and z ∈ C in

the resolvent set of the corresponding Hamiltonian. Since

HD(�)Jα = Hα(�)Jα for α = e, b (2.4)

following [13] we have

(HD(�) − z)(JeGe(z)χe + JbGb(z)χb) = (He(�) − z)JeGe(z)χe + (Hb(�) − z)JbGb(z)χb

= Jeχe + Jbχb + 1
2

[
p2

x, Je

]
Ge(z)χe + 1

2

[
p2

x, Jb

]
Gb(z)χb

= 1 + Ke(z) + Kb(z) (2.5)

where Kα(z) = 1
2

[
p2

x, Jα

]
Gα(z)χα, α = e, b. Thus

(HD(�) − z)−1 = (JeGe(z)χe + JbGb(z)χb)(1 + Ke(z) + Kb(z))
−1. (2.6)

In appendix A, we prove the following estimates for the operator norms of Ke(z) and Kb(z)

for B
2 + w < Re z < 3B

2 − w (in what follows c is a generic positive numerical constant)

‖Ke(z)‖ � cB
3
2 L

δe(z)
e−cBD2

(2.7)
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‖Kb(z)‖ � cB
3
2 L

δ0(z) − cw
e−c

√
BD (2.8)

where δe(z) = dist(z, σ (He(�)) and where δ0(z) = min
(∣∣z − B

2

∣∣, ∣∣z − 3B
2

∣∣). We have to
take w small enough so that the denominator in (2.8) stays positive. Later on we choose z

appropriately and D large enough so that both terms become smaller than 1
2 . Thus

(HD(�) − z)−1 = JeGe(z)χe + JbGb(z)χb + R(z) (2.9)

where

‖R(z)‖ � (‖Ge(z)‖ + ‖Gb(z)‖) [(1 − ‖Ke(z)‖ − ‖Kb(z)‖)−1 − 1]. (2.10)

Let m ∈ Z be such that ε0
(

2πm
L

+ �
L

)
is an eigenvalue belonging to σ(He(�)) ∩ G̃0. We

can choose ρ > 0 small enough independent of m and L such that the circle Cm with centre
ε0

(
2πm
L

+ �
L

)
and radius ρ

L
encloses only one such eigenvalue. By choosing z in a sufficiently

thin annulus around Cm and D large enough, (2.7) and (2.8) can be made smaller than
cB

3
2 L2

ρ
e−c

√
BD < 1

2 . At the same time from (2.10) we have

‖R(z)‖ � cB
3
2 L3

ρ2
e−c

√
BD (2.11)

so that from (2.9) (HD(�) − z)−1 is well defined for z in a thin annulus surrounding Cm.
Therefore, we can compute the spectral projection PD(m,�) of HD(�) for the interval
Im = ]

ε0
(

2πm
L

+ �
L

) − ρ

L
, ε0

(
2πm
L

+ �
L

)
+ ρ

L

[
by Cauchy’s formula. Let Pe(m,�) be the

projector of He(�) corresponding to the level ε0
(

2πm
L

+ �
L

)
. Thanks to (2.9), (2.11) we obtain

for D large enough

‖PD(m,�) − Pe(m,�)‖ � cB
3
2 L2

ρ
e−c

√
BD < 1. (2.12)

This estimate implies that σ(HD(�)) ∩ Im contains only one eigenvalue of multiplicity equal
to 1. Note that this conclusion holds for all Im ⊂ G̃0. Finally, since He(�) and Hb(�)

have no spectrum in (∪mIm)c ∩ G̃0 we deduce from (2.7), (2.8), (2.9) that HD(�,L) has no
spectrum in that same set. Therefore, σ(HD(�,L)) ∩ G̃0 consists of isolated eigenvalues of
multiplicity 1.

It remains to be shown that an eigenvalue Ek(0) ∈ G̃0 can be continued into one or several
analytic branches Ek(�) for � small enough. In the present case it is sufficient to show [11]
that (py − Bx) is relatively bounded with respect to H(0). For any ψ in the domain of H(0)

and any complex number z with Im z �= 0 we have
1
2 ‖(py − Bx)ψ‖2 � 〈ψ|(H(0) − V )ψ〉

= 〈ψ|(H(0) − z)−1(H(0) − z)|(H(0) − z̄ + z)ψ〉 − 〈ψ|V ψ〉
� ‖(H(0) − z)−1‖ · ‖H(0)ψ‖2 + |z| · ‖ψ‖2

+ |z|2‖(H(0) − z)−1‖ · ‖ψ‖2 + w‖ψ‖2

� 1

|Im z| ‖H(0)ψ‖2 +

(
|z| +

|z|2
|Im z| + w

)
‖ψ‖2. (2.13)

This concludes the proof of the lemma. �

Remark. In (2.13) we can take |Im z| as large as we wish so the size of the interval of analyticity
is not limited by the relative bound but rather by the fact that the branch Ek(�) may merge
in the Landau bands (outside of G0) where it may not be isolated anymore. Inequality (3.15)
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shows that for L large enough the maximal variation of Ek(�) is 2π
√

3BL−1, so that if Ek(�)

is contained in 	 for some � then it is contained in G̃0, and it is analytic for all � ∈ [0, 2π].

Before presenting the formal proof of lemma 2 we would like to point out that in fact (1.2)
is closely related to the ideas in [3] and [4]. Using the unitary translation operator x → x + �

BL

and the Feynman–Hellman theorem it is easy to see that

L
d

d�
Ek(�) = 〈�k(�)|(W ′ + ∂xV )�k(�)〉

where |�k(�)〉 is the eigenstate with eigenvalue Ek(�). Using the methods of [3] or [4] one
may show that for Ek(�) ∈ 	, |�k(�)〉 is mainly concentrated near the region where W ′(x)

is large so that (1.2) holds provided both V, ∂xV are small enough. Here we follow a different
method which is closer to the original argument of Halperin [2] in that it uses directly the
relation (1.4) instead of (2.13). Only the smallness of V is required.

Proof of lemma 2. The eigenstates |unm(�)〉 of He(�) with eigenvalues εn

(
2πm
L

+ �
L

)
are of

the form

〈xy|unm(�)〉 = ei 2πm
L

yhnm(x) (2.14)

so that
〈
unm(�)

∣∣(py − Bx − �
L

)
un′m′(�)

〉 = 0 for m �= m′ and all n, n′. Therefore writing

|�k(�)〉 = ∣∣�0
k (�)

〉
+

∣∣�1
k (�)

〉
(2.15)

where

∣∣�0
k (�)

〉 =
+∞∑

m=−∞
c0m
k |u0m(�)〉 (2.16)

∣∣�1
k (�)

〉 =
∑
n�1

+∞∑
m=−∞

cnm
k |unm(�)〉 (2.17)

we obtain from (1.3), (1.4)

L
d

d�
Ek(�) =

+∞∑
m=−∞

∣∣c0m
k

∣∣2
〈
u0m(�)

∣∣∣∣
(

py − Bx − �

L

)
u0m(�)

〉

+ 2Re

〈
�0

k (�)

∣∣∣∣
(

py − Bx − �

L

)
�1

k (�)

〉

+

〈
�1

k (�)

∣∣∣∣
(

py − Bx − �

L

)
�1

k (�)

〉
. (2.18)

First we show that the last two terms on the right-hand side of (2.18) are bounded by the norm√
3B

∥∥�1
k (�)

∥∥. The Schwartz inequality implies∣∣∣∣
〈
�0

k (�)

∣∣∣∣
(

py − Bx − �

L

)
�1

k (�)

〉 ∣∣∣∣ �
∥∥∥∥�1

k (�)‖ · ‖
(

py − Bx +
�

L

)
�0

k (�)

∥∥∥∥
�

√
2
∥∥�1

k (�)
∥∥ (〈

�0
k (�)

∣∣He(�)�0
k (�)

〉)1/2

�
√

2
∥∥�1

k (�)
∥∥ (〈

�0
k (�)

∣∣He(�)�0
k (�)

〉
+

〈
�1

k (�)
∣∣He(�)�1

k (�)
〉)1/2

=
√

2
∥∥�1

k (�)
∥∥ (〈�k(�)

∣∣He(�)�k(�)〉)1/2

�
√

2
∥∥�1

k (�)
∥∥ (Ek(�) + w)1/2 �

√
3B

∥∥�1
k (�)

∥∥ . (2.19)
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For the third matrix element on the right-hand side of (2.18) the same method leads to an
identical estimate. From the Feynman–Hellman formula we have〈

u0m(�)

∣∣∣∣
(

py − Bx − �

L

)
u0m(�)

〉
= L

d

d�
ε0

(
2πm

L
+

�

L

)

= ε ′
0

(
2πm

L
+

�

L

)
(2.20)

where ε ′
0(k) is the derivative of the lowest monotone increasing spectral branch corresponding

to the Hamiltonian He,∞. From (2.18), (2.19), (2.20)

L
d

d�
Ek(�) �

+∞∑
m=−∞

∣∣c0m
k

∣∣2
ε ′

0

(
2πm

L
+

�

L

)
− 2

√
3B

∥∥�1
k (�)

∥∥
� vF (M)

∑
|m−M |�m̄

∣∣c0m
k

∣∣2 − 2
√

3B
∥∥�1

k (�)
∥∥ (2.21)

with the Fermi velocity

vF (M) = min
|m−M |�m̄

ε ′
0

(
2πm

L
+

�

L

)
. (2.22)

The integers M and m̄ will be chosen conveniently below. Writing the Schrödinger equation
in the form

∞∑
n=0

+∞∑
m=−∞

cnm
k

(
εn

(
2πm

L
+

�

L

)
− Ek(�)

)
|unm(�)〉 = V (x, y)|�k(�)〉 (2.23)

and taking the norm on both sides
∞∑

n=0

+∞∑
m=−∞

∣∣cnm
k

∣∣2
(

εn

(
2πm

L
+

�

L

)
− Ek(�)

)2

� w2. (2.24)

Dropping the term n = 0, using
(
εn

(
2πm
L

+ �
L

)−Ek(�)
)2 �

(
B
2 −δ

)2
for n � 1 and Ek(�) ∈ 	

we get

∑
n�1

∞∑
m=−∞

∣∣cnm
k

∣∣2 = ∥∥�1
k (�)

∥∥2 � w2(
B
2 − δ

)2 . (2.25)

From (2.24) one can also derive a lower bound for
∑

|m−M |<m̄

∣∣c0m
k

∣∣2
. Indeed retaining only

the term n = 0 and using the monotonicity of ε0
(

2πm
L

+ �
L

)
we have

A(M, m̄)2
∑

|m−M |>m̄

∣∣c0m
k

∣∣2 � w2 (2.26)

where A(M, m̄) is the smallest of the two numbers
∣∣ε0

(
2π
L

(M ± m̄) + �
L

)∣∣ − Ek(�)
∣∣. Now

we choose any M such that ε0
(

2πM
L

+ �
L

) ∈ 	 and since Ek(�) ∈ 	 we can take m̄ such that
A(M, m̄) � B

2 − 2δ. Thus

∑
|m−M |>m̄

∣∣c0m
k

∣∣2 � w2(
B
2 − 2δ

)2 . (2.27)

Finally the normalization condition for |�k(�)〉 combined with (2.25) and (2.27) implies∑
|m−M |�m̄

∣∣c0m
k

∣∣2 � 1 − 2w2(
B
2 − 2δ

)2 (2.28)
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From (2.21), (2.25) and (2.28) we have

L
d

d�
Ek(�) � vF (M)

[
1 − 2

(
1 +

√
3B

vF (M)

)
w2(

B
2 − 2δ

)2

]
. (2.29)

Clearly vF (M) is a strictly positive number which does not depend on V but only on W and
B. Therefore (2.29) implies the result of the lemma for w and δ small enough. �

It will become clear in the next section that the proof of theorem 1 requires the absence
of crossings for the branches Ek(�) in 	. Since we do not know a priori if this is true for
H(�), an intermediate step is to construct a suitable perturbation of H(�) for which the
non-crossing property is satisfied. The perturbation that is added here has the effect of lifting
the degeneracy at each crossing in 	 in a way that (1.2) still holds for the perturbed branches.
This is the content of the next lemma.

Lemma 3. Fix B,w, δ and L as in lemma 2. Assume that V (x, y) is such that the
eigenvalues El(0) are not degenerate. One can construct a finite rank perturbation R(�)

with ‖R(�)‖ � L−10 such that the spectrum of H̃ (�) = H(�) + R(�) in 	 consists of
non-degenerate eigenvalues forming infinitely differentiable spectral branches which do not
cross and are labelled as Ẽl(�) with Ẽl(0) = El(0). Moreover the new branches satisfy

L
d

d�
Ẽl(�) � α̃ (2.30)

where α̃ is strictly positive and independent of L.

Proof of lemma 3. Let P	(�) be the eigenprojector of H(�) onto 	. Then we have

P	(�)H(�)P	(�) =
∑

El(�)∈	

El(�)|�l(�)〉〈�l(�)|. (2.31)

Since the branches El(�) are analytic and the eigenvalues are not degenerate for � = 0, the
possible crossings are necessarily isolated. Indeed if two branches coincided on a set with
accumulation points they would concide over the whole interval [0, 2π] and therefore violate
the non-degeneracy assumption at � = 0. Therefore, we can assume without loss of generality
that there is at most a finite number of crossings in 	. Let us construct the perturbation R(�).
First consider the set C of pairs of branches which cross in 	 (note that n branches may cross
at the same point and contribute as n(n−1)

2 pairs). Pick one pair of branches in C, say (ij), and
assume Ei(0) < Ej (0). Suppose they cross at points �

µ

ij where the label µ takes into account
the fact that the branches i and j may cross more than once, i.e.

Ei

(
�

µ

ij

) = Ej

(
�

µ

ij

)
. (2.32)

Let λ
µ

ij (�) be infinitely differentiable test functions centred at �
µ

ij with a compact support of
width β1 and max0���2π

∣∣λµ

ij (�)
∣∣ � λ1. The real numbers δ1 and λ1 will be adjusted in a

suitable way below. Add to the Hamiltonian H(�) the perturbation

R1(�) =
∑

µ

λ
µ

ij (�)(|�i(�)〉〈�j(�)| + |�j(�)〉〈�i(�)|). (2.33)

We take β1 small enough so that supports of the test functions do not contain � = 0 and do
not overlap. In order to diagonalize the new Hamiltonian it is sufficient to work in the two-
dimensional subspace of the branches i and j . The spectral branches of the new Hamiltonian
do not change for k �= i, j , whereas for k = i, j they become

E1
i (�) = 1

2

(
Ei(�) + Ej (�) −

√
(Ei(�) − Ej(�))2 + λ

µ

ij (�)2
)

(2.34)
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and

E1
j (�) = 1

2

(
Ei(�) + Ej (�) +

√
(Ei(�) − Ej(�))2 + λ

µ

ij (�)2
)

. (2.35)

Since the difference

E1
j (�) − E1

i (�) =
√

(Ei(�) − Ej(�))2 + λ
µ

ij (�)2 (2.36)

is always strictly positive, the new pair (ij) is non-degenerate for all values of �. Moreover
by choosing λ1 small enough we can make sure that we do not introduce more crossings.
Therefore, the perturbed Hamiltonian

H1(�) = H(�) + R1(�) (2.37)

has a new set C1 of pairs of branches which cross with one element less than C. One can
construct in the same way a perturbation R2(�) of (2.37) (with δ2, λ2 small enough) so that
the new Hamiltonian H2(�) = H1(�) + R2(�) has two less pairs of branches which cross
than H(�). Since there is at most a finite number of such pairs by iterating this construction
we end up with the Hamiltonian

H̃ (�) = H(�) +
∑

p

Rp(�) = H(�) + R(�) (2.38)

of the lemma, where the sum over p contains a finite number of terms. Note that H̃ (0) = H(0)

so that the labelling of the lemma holds. The norm of the total perturbation is

‖R(�)‖ �
∑

p

‖Rp(�)‖ �
∑

p

λp. (2.39)

The condition ‖R(�)‖ � L−10 can always be achieved by choosing at each step

λp � βp

L10+p
(2.40)

and βp � 1
10 .

It remains to check that (2.30) holds. From the formulae (2.34), (2.35) and lemma 2, it is
easy to check that at the first step of the construction the new branches have new derivatives
satisfying

d

d�
E1

i,j (�) � min

(
d

d�
Ei(�),

d

d�
Ej(�)

)
− 1

2

∣∣∣∣ d

d�
λ

µ

ij (�)

∣∣∣∣ (2.41)

for all �. At each step of the construction it is possible to choose test functions such that

max
0���2π

∣∣∣∣ d

d�
λ

µ

ij (�)

∣∣∣∣ � 2

L10+p
(2.42)

in a way consistent with (2.40). So at the first step (p = 1)

d

d�
E1

i,j (�) � α

L
− 1

L11
. (2.43)

Of course (2.43) is also valid for the spectral branches of H1(�) that correspond to k ∈ N .
Therefore it is valid for all eigenvalues of H1(�). By iterating the construction we see that
any branch of (2.38) satisfies

d

d�
Ẽl(�) � α

L
−

∑
p

1

L10+p
(2.44)

which implies (2.30). �



Spectral flow and level spacing of edge states for quantum Hall Hamiltonians 1575

3. Relative index and level spacing

The main goal of this section is to prove theorem 1. Let us first outline the strategy of the proof.
Without loss of generality we can suppose that V is such that Ek(0) are non-degenerate. Indeed
if this is not the case one may find a sufficiently small perturbation u(x, y), ‖u‖∞ < L−10

such that this hypothesis is satisfied for V + u. If (1.5), (1.6) hold for V + u then they hold
for V because the perturbation of the discrete levels separated by O(L) is at most O(L−10).
From lemma 2, we know that for Ek(�) ∈ 	 there is a non-trivial spectral flow: the branches
are monotone increasing, and since H(0) and H(2π) are unitarily equivalent we must have
Ek(2π) = Ek′(0), k′ > k. We want to show that in fact k′ = k + 1. Let EF be a single ‘Fermi
energy’ lying between two consecutive levels of both Hamiltonians HD(0) and H̃ (0). Define
the integers QD

F and Q̃F to be the number of branches of the corresponding Hamiltonians
which cross EF as � varies from 0 to 2π . We will show that QD

F = Q̃F = 1. We know
from lemma 3 that the branches of H̃ (�) do not have crossings and from the proof of
lemma 1 that the same is true for the branches of HD(�). This enables us to relate Q̃F and
QD

F to the notion of relative index of a pair of projections introduced by Avron et al [14].
Then by using the fact that the Fredholm index of an operator does not change under compact
perturbations we deduce that Q̃F = QD

F . By explicit computation we can check that QD
F = 1

and therefore Q̃F = 1 which implies that Ẽk(2π) = Ẽk+1(0). Since the branches of H̃ (�) are
a small perturbation of those of H(�) we deduce (1.5). Estimate (1.6) is then an immediate
consequence.

In order to make the paper self-contained we give a short summary of the mathematical
tools used below, as developed in [14]. Let P and Q be orthogonal projections on a separable
Hilbert space H. The pair (P ; Q) is called Fredholm if QP viewed as a map from PH to QH
is a Fredholm operator. The relative index Ind(P ; Q) of the pair is the usual Fredholm index of
T = QP , that is dim Ker(T †T ) − dim Ker(T T †). One proves that (P ; Q) is a Fredholm pair
if and only if 1 and −1 are isolated finitely degenerate eigenvalues of P −Q, when they belong
to the spectrum. Moreover one has Ind(P,Q) = dim Ker(P −Q− 1)− dim Ker(P −Q + 1).
A useful formula (we use it for m = 0) states that if (P −Q)2m+1 is trace class for some integer
m then (P ; Q) is a Fredholm pair and Ind(P ; Q) = Tr(P − Q)2n+1, for all n � m. A central
result on which we rely is that if (P ; Q) and (Q; R) are Fredholm pairs and either P − Q or
Q − R is compact then (P ; R) is a Fredholm pair and

Ind(P ; R) = Ind(P ; Q) + Ind(Q; R). (3.1)

Finally we note that if (P ; Q) is Fredholm then so is (UPU †; UQU †) for any unitary U and
the relative index remains invariant. Also Ind(P ; Q) = −Ind(Q; P).

3.1. Relation between Q̃F ,QD
F and the relative index of a pair of projections

We fix EF ∈ 	 between two consecutive levels of H̃ (0) and H̃ (2π) (recall that they have
the same spectrum). Let P̃F,0 (resp. P̃ F,2π ) be the projectors of H̃ (0) (resp. H̃ (2π)) onto the
energy range ]−∞, EF ]. We also need the projector on levels Ẽk(0) whose spectral branch
Ẽk(�) crosses EF . Namely

P̃ c
F,0 =

∑
Ẽk(0)<EF s.tẼk(�)crossesEF

P (Ẽk(0)) (3.2)

where P(Ẽk(0)) is the eigenprojector of H̃ (0) corresponding to the discrete level Ẽk(0). Since
EF ∈ 	 by taking L large enough we are assured that this sum is finite and that the branches
crossing EF remain in 	 for all � ∈ [0, 2π].
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Setting P̃ n.c
F,0 = P̃ F,0 − P̃ c

F,0 we have

Q̃F = Tr P̃ c
F,0 = Tr

(
P̃ F,0 − P̃ nc

F,0

) = Ind
(
P̃ F,0; P̃ nc

F,0

)
. (3.3)

We introduce a smooth, monotone increasing function of time ϕ(t), 0 � t � T , ϕ(0) = 0
and ϕ(T ) = 2π , describing the adiabatic switching of a flux quantum through the axis of the
cylinder. Let Ut be the unitary time evolution associated with the time-dependent Hamiltonian
H̃ (ϕ(t)). From lemma 3, as t varies the spectral branches in 	 do not cross and are monotone
increasing. So an application of the adiabatic theorem [15] assures that UT P̃ nc

F,0U
†
T tends to

P̃ F,2π . Thus there exists some large enough T0 such that for T > T0, the pair of projections(
P̃ nc

F,0; U
†
T P̃ F,2πUT

)
satisfies∥∥P̃ nc

F,0 − U
†
T P̃ F,2πUT

∥∥ < 1. (3.4)

Thus it is Fredholm and Ind
(
P̃ nc

F,0; U
†
T P̃ F,2πUT

) = 0. Since P̃ F,0 − P̃ nc
F,0 is finite rank we

can apply (3.1) to get

Q̃F = Ind
(
P̃ F,0; P̃ nc

F,0

)
= Ind

(
P̃ F,0; U

†
T P̃ F,2πUT

)
+ Ind

(
U

†
T P̃ F,2πUT ; P̃ nc

F,0

)
= Ind

(
P̃ F,0; U

†
T P̃ F,2πUT

)
. (3.5)

Finally let U be the multiplication operator by ei 2π
L

y . Since U does not change the boundary
conditions and U †H(0)U = H(2π) we obtain the formula

Q̃F = Ind
(
P̃ F,0; U

†
T U †P̃F,0UUT

)
. (3.6)

The same construction for HD(0) leads to

QD
F = Ind

(
PD

F,0; U
D†
T U †PD

F,0UUD
T

)
(3.7)

where PD
F,0 is the projector of HD(0) onto ]−∞, EF ], and UD

t is the time evolution associated
with the Hamiltonian HD(ϕ(t)). We remark that the identities of this paragraph can be checked
by explicit computation for the simple toy Hamiltonian (1.7).

Remark. In [18] a different relative index for an infinite two-dimensional system is studied
and related to the Hall conductivity viewed as a Chern number. It would be interesting to
investigate the analogous relationship in the present case with a boundary.

3.2. Equality of Q̃F and QD
F

Since V − VD has a finite support, (z − HD(0))−1(V − VD) is a compact operator for z not in
σ(HD(0)). Therefore the resolvent identity and Cauchy’s formula imply that P̃ F,0 − PD

F,0 is
compact. Thus the pair

(
P̃F,0; PD

F,0

)
is Fredholm and we can apply (3.1) to get

Ind
(
P̃F,0; U

†
T U †P̃F,0UUT

) = Ind
(
P̃F,0; PD

F,0

)
+ Ind

(
PD

F,0; U
†
T U †P̃ F,0UUT

)
= Ind

(
P̃F,0; PD

F,0

)
+ Ind

(
PD

F,0; U
†
T U †PD

F,0UUT

)
+ Ind

(
U

†
T U †PD

F,0UUT ; U
†
T UP̃F,0U

†UT

)
. (3.8)

The first and third terms in the last equality of (3.8) cancel. Thus

Q̃F = Ind
(
PD

F,0; U
†
T U †PD

F,0UUT

)
= Ind

(
PD

F,0UUT PD
F,0

∣∣PD
F,0H → PD

F,0H
)

(3.9)
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where in the last line we introduced the Fredholm index of PD
F,0UUT PD

F,0 viewed as a map
from PD

F,0H to itself (H the Hilbert space of the cylinder). From Dyson’s equation

PD
F,0UUT PD

F,0 − PD
F,0UUD

T PD
F,0 =

∫ T

0
dsPD

F,0UUD
T −s(V − VD)UsP

D
F,0. (3.10)

Therefore, the Hilbert–Schmidt norm of the left-hand side is smaller than∫ T

0
ds

∥∥PD
F,0UUD

T −s(V − VD)
∥∥

HS
(3.11)

which is shown to be finite in appendix B. Thus the difference (3.10) is compact, and the two
operators have the same Fredholm index

Ind
(
PD

F,0UUT PD
F,0

∣∣PD
F,0H → PD

F,0H
) = Ind

(
PD

F,0UUD
T PD

F,0

∣∣PD
F,0H → PD

F,0H
)

(3.12)

which is equivalent to Q̃F = QD
F .

3.3. End of proof of (1.5) and (1.6)

From the analysis of section 2, we know that for D large enough (say D = O(L)) the branches
of He(�) and HD(�) that belong to 	 lie close to each other within a distance O(e−c

√
BL).

Since the spacing of the branches of He(�) is O(L−1) it follows that QD
F = 1 and therefore

Q̃F = 1. Thus Ẽk(2π) = Ẽk+1(0) and since there exists 0 � �̄ � 2π such that

Ẽk(2π) − Ẽk(0) = 2π
dẼk

d�
(�̄) (3.13)

from (2.30) we get the lower bound

|Ẽk+1(0) − Ẽk(0)| � 2πα̃

L
. (3.14)

Because Ẽl(0) = El(0), this bound shows that the levels of H(0) (or H(2π)) are spaced by
O(L−1). Using the spectral flow of H̃ (�), together with the facts that the levels of H̃ (�)

and H(�) are separated by O(L−10) and that dEk(�)

d�
is strictly positive, one deduces that

necessarily Ek(2π) = Ek+1(0). Then proceeding as in (3.13) and (3.14) we obtain the lower
bound (1.6). Finally the upper bound is a consequence of

L

∣∣∣∣dEk

d�
(�̄)

∣∣∣∣ = 〈�k(�̄)|py − Bx +
�̄

L
|�k(�̄)〉

�
∥∥∥∥�k(�̄)‖ · ‖

(
py − Bx +

�̄

L

)
�k(�̄)

∥∥∥∥
� (〈�k(�̄)|2H(�̄)|�k(�̄)〉 − 〈�k(�̄)|2V |�k(�̄)〉) 1

2

� (2Ek(�̄) + 2w)
1
2 � (3B)

1
2 . (3.15)

Acknowledgment

I wish to thank Jürg Fröhlich for drawing my attention to the spectral flow.

Appendix A

We start with a sketch of preliminary estimates for the Green function of the pure magnetic
problem on the cylinder of circumference L,

H0(�) = 1

2
p2

x +
1

2

(
py − Bx +

�

L

)2

. (A.1)
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Using the spectral decomposition of the Green function G0(z) = (H0(�) − z)−1 on a basis of
eigenfunctions

ei 2πm
L

yϕn,m(x) (A.2)

and the Poisson summation formula we obtain

〈x, y|G0(�)|x ′, y ′〉 =
+∞∑

m=−∞
ei �

L
(y−y′−mL)〈x, y − mL|G0,∞(z)|x ′, y ′〉 (A.3)

where G0,∞(z) is the Green function of the pure magnetic problem on the infinite two-
dimensional plane. In the Landau gauge (r = (x, y))

〈r|G0,∞(z)|r′〉 = B

2
�

(
1

2
− z

B

)
U

(
1

2
− z

B
, 1,

B

2
|r − r′|2

)

× exp

(
−B

4
|r − r′|2 +

iB

4
(x + x ′)(y − y ′)

)
. (A.4)

The presence of the Euler � function indicates that the Landau levels remain unchanged on
the cylinder, and U is the Kummer function [16]. By using some technical estimates as in [17]
one may show that for B

2 < Re z < 3B
2 the absolute value of (A.3) is bounded above by the

simple expression

cB

δ0(z)
e− B

8 |x−x′ |2 ∑
m=−1,0,+1

S(x − x ′, y − y ′ − mL) e− B
8 (y−y′−mL)2

(A.5)

where c is a numerical constant independent of B and L. The factor S comes from the
logarithmic divergence at coincident points

S(x − x ′, y − y ′) = 1 for
B

2
|r − r′|2 > 1

= ln
B

2
|r − r′|2 otherwise.

(A.6)

A bound similar to (A.5) holds for |∂x〈r|G0,∞(z)|r′〉|, with cB replaced by cB
3
2 and S replaced

by |x−x′ |
|r−r′|2 when B

2 |r − r′|2 < 1. The important feature for the subsequent estimates is that all
the above singularities are integrable. In what follows c denotes a generic numerical positive
constant.

A.1. Estimate of ‖Ke‖
From the resolvent identity

Ke(z) = 1
2

[
p2

x, Je

]
G0(z)χe + 1

2

[
p2

x, Je

]
G0(z)WGe(z)χe. (A.7)

Evaluating the commutator, and using ‖Ge(z)‖ � δe(z)
−1 we find

‖Ke(z)‖ � 1
2‖J ′′

e G0(z)χe‖ + ‖J ′
e∂xG0(z)χe‖ + δe(z)

−1(‖J ′′
e G0(z)W‖ + ‖J ′

e∂xG0(z)W‖).
(A.8)

Estimate (2.7) follows from the fact that all norms on the right-hand side of (A.8) involve
matrix elements of G0(z), and ∂xG0(z) separated by a distance at least equal to D

4 . We use
the estimate (A an operator with kernel A(r, r′))

‖A‖ � max

(
sup

r′

∫
dr|A(r, r′)|; sup

r

∫
dr′|A(r, r′)|

)
. (A.9)
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For the first norm we have∫ − 3D
4 +1

− 3D
4 −1

dx

∫ L
2

L
2

dyJ ′′
e (x)|〈r|G0(z)|r′〉|χe(x

′) � cBL

δ0(z)

∫ − 3D
4 +1

− 3D
4 −1

dx e− B
8 |x−x′ |2χe(x

′)

� c
√

BL

δ0(z)
e−cBD2

. (A.10)

In the first inequality we used (A.5) and in the last one we use the fact that |x − x ′| � D
4 . On

the other hand

J ′′
e (x)

∫ ∞

− D
2

dx ′
∫ L

2

− L
2

dy ′|〈r|G0(z)|r′〉|χe(x
′) � cBL

δ0(z)
J ′′

e (x)

∫ ∞

− D
2

dx ′ e− B
8 |x−x′ |2χe(x

′)

� c
√

BL

δ0(z)
e−cBD2

. (A.11)

Thus ‖J ′′
e G0(z)χe‖ � CL2

δ0(z)
e−cBD2

. For the term involving ∂xG0(z) the estimates are similar.
The terms involving W lead to the same estimates provided∫ − 3D

4 +1

− 3D
4 −1

dx e− B
8 |x−x′ |2U(x ′) and J ′′

e (x)

∫ ∞

0
dx ′ e− B

8 |x−x′ |2U(x ′) (A.12)

are bounded by O(exp(−cBD2)). This is the case for the class of functions W(x) that grow
polynomially as x → +∞.

A.2. Estimate for ‖Kb‖
First we sketch the derivation of an estimate for the kernel of Gb(z) and its derivative for z in
the gap of σ(Hb(�)).

〈r|Gb(z)|r′〉 = 〈r|G0(z)|r′〉 +
∑
m�1

∫
dr1 . . .

∫
drm〈r|G0(z)|r1〉V (r1)

× 〈r1|G0(z)|r2〉V (r2) . . . V (rm)〈rm|G0(z)|r′〉. (A.13)

Here the range of the integrals over x1, . . . , xm is ]−∞, +∞[, and that of y1, . . . , ym is[−L
2 , L

2

]
. In order to extract the decay for |x − x ′| large from (A.13) and (A.5) we use, from

B|x − x ′|2 > 2
√

B|x − x ′| − 1,

e− B
8 (|x−x1|2+|x1−x2|2+···+|xm−x′ |2) � e− B

16 (|x−x1|2+|x1−x2|2+···+|xm−x′ |2)e−
√

B
8 (|x−x1|+|x1−x2|+···+|xm−x′ |) e

m
16

� e
m
16 e−

√
B

8 |x−x′ | e− B
16 (|x−x1|2+|x1−x2|2+···+|xm−x′ |2). (A.14)

Thanks to (A.5), (A.13), (A.14) we obtain for B
2 |x − x ′| > 1

|〈r|Gb(z)|r′〉| � cB

δ0(z)
e− B

8 |x−x′ |2 +
∑
m�1

(
cB

δ0(z)

)m+1 (w

B

)m

e−
√

B
8 |x−x′ |

� cB

δ0(z) − cw
e−

√
B

8 |x−x′ |. (A.15)

This bound is valid as long as w is small enough. Clearly from (A.13), following the same steps,
we obtain a similar inequality, with cB replaced by cB

3
2 , for |∂x〈r|Gb(z)|r′〉| if B

2 |x −x ′| > 1.
To estimate ‖Kb‖ we have to compute the norms on the right-hand side of

‖Kb‖ � 1
2‖J ′′

b Gb(z)χb‖ + ‖J ′
b∂xGb(z)χb‖. (A.16)
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This can be done easily using (A.9), (A.16) and the bound (A.15) together with that on the
derivative. Then one finds

‖Kb‖ � cB
3
2 L

δ0(z) − cw
e−c

√
BD. (A.17)

Appendix B

By Cauchy’s formula, and the resolvent identity

PD
F,0 =

∫
�F

dz
1

z − HD(0)
=

∫
�F

dz
1

z − H0(0)
+

∫
�F

dz
1

z − HD(0)
(W + VD)

1

z − H0(0)

(B.1)

where the contour �F encloses the part of the spectrum of HD(0) lying below EF . Setting
g = UUD

T −s (V − VD) we have for the Hilbert–Schmidt norm

∥∥PD
F,0g

∥∥
HS

� |�F | sup
z∈�F

∥∥∥∥ 1

z − H0(0)
g

∥∥∥∥
HS

+
|�F |

dist(EF , σ (HD(0)))

×
(

sup
z∈�F

∥∥∥∥W
1

z − H0(0)
g

∥∥∥∥
HS

+ w sup
z∈�F

∥∥∥∥ 1

z − H0(0)
g

∥∥∥∥
HS

)
. (B.2)

Here |�F | is the length of the contour which is finite because the spectrum is bounded below.
Since V −VD has compact support, g is a square integrable function on the cylinder. Therefore,
from the bound (A.5), (A.6) on the kernel of (z − H0)

−1 it is easily seen that all the Hilbert–
Schmidt norms in (B.2) are finite. These norms can be bounded above uniformly in 0 � s � T ,
and the supremum over z stays finite as long as the contour does not touch a Landau level.
Therefore (3.11) is finite.
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